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Abstract. Interface phenomena, such as wetting and layering transitions of the three-state 
chiral clock model in three dimensions, are studied within the Bethe approximation. The 
Bethe approximation yields the correct sequence of first-order layering transitions. This 
is in contrast to the mean-field theory which is known to be qualitatively misleading for 
low temperatures. At higher temperatures the discontinuities of the order parameter at the 
layering transitions become exceedingly small so that the magnetisation profile appears to 
vary continuously across the interface. For finite values of the chiral field A the width of 
the interfacial layer is found to remain finite at the first-order bulk transition line. Critical 
wetting occurs only for A = 0, i.e. for the symmetric three-state Potts model. 

1. Introduction 

At an interface between coexisting phases various structural phenomena can be 
observed. As the external parameters, most often the temperature, are varied phase 
transitions such as wetting, layering and roughening transitions may occur (for an 
overview see Sullivan and Telo da Gama (1986)). In this paper we study the behaviour 
of an interface in the three-state chiral clock (cc3) model (Ostlund 1981, Huse 1981) 
in three dimensions. This layered spin model exhibits a modulated magnetisation 
along an axial direction whereas the magnetisation in the layers perpendicular to this 
direction is homogeneous. An interface between regions with different spin orientations 
may be introduced by fixing the spins in the top and bottom layers in two different 
states. We choose n = 0 in the bottom layer and n = 2 in the top layer (the three spin 
states will be labelled by n = 0, 1, 2). Depending on the temperature and on the value 
of the chiral field A the ensuing interface may be wetted with spins in the third state 
n = 1. It is known (Armitstead er a1 1986) that at low temperatures this wetting occurs 
through a sequence of first-order layering transitions. At A = $ an entire layer of n = 1 
states intervenes between the n = 0 and n = 2 regions and the number of n = 1 layers 
increases in integer steps beyond A = $. At higher temperatures one expects these 
first-order transitions to terminate at certain critical endpoints which accumulate at 
the roughening temperature (Wortis 1984, Pandit er al 1982, de Oliveira and Griffiths 
1978). These phenomena cannot be investigated by the use of the mean-field (MF) 

approximation, since the M F  theory of the cc3 model is qualitatively misleading at low 
temperatures (Siegert and Everts 1985, Szpilka and Fisher 1986, 1987, Armitstead and 
Yeomans 1988). In particular it wrongly predicts that there should be only two layering 
transitions at low temperatures (Armitstead and Yeomans 1988). In previous work 
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(Siegert and Everts 1987) it has been shown that the Bethe approximation, which is 
the first step beyond the MF approximation in the hierarchy of cluster variation methods, 
does not suffer from the deficiencies of the M F  theory. It yields the correct bulk phase 
diagram of the cc3 model in the low-temperature regime and it provides a detailed 
picture of the phase structure also at intermediate and high temperatures. 

This paper is organised as follows. In the next section we describe the Bethe 
approximation of the model and show that this approximation comprises the low- 
temperature expansion of the original model. In § 3 we present and discuss the phase 
diagram obtained by a numerical evaluation of the Bethe approximation, in particular 
the differences of the phase transitions at low and high temperatures are elucidated. 
The behaviour of the interface close to the critical temperature of the bulk is studied 
in 9 4 by a simplified approximation. For A = 0 the thickness of the wet domain is 
found to diverge logarithmically, whereas it remains finite for A > 0. The concluding 
§ 5 contains a short summary of the paper. 

2. The Bethe approximation and low-temperature expansions 

The three-state chiral clock model on a three-dimensional layered lattice is defined by 
the Hamiltonian 

H = -Jo 

J , , J>O 

C cos $T( n,, - nj,) - J  C cos $.ir(ni, - r ~ , , + ~  -A) 
a (LA m i  

(2.1) 
ni, = 0, 1, 2. 

Here the index a labels the two-dimensional layers and i, j count the lattice sites 
within a layer. Only nearest-neighbour interactions are included. The integer variables 
nim are connected with the local spin variables Si, by 

si, = (cos &mi,, sin $mi,). 

Within the layers these spins are coupled ferromagnetically, whereas in the axial 
direction the chiral field A favours an angle of :TA between two neighbouring spins. 
A = 0 corresponds to the usual three-state Potts model. We consider the model in that 
part of the T-A parameter plane where the bulk state is ferromagnetic (Siegert and 
Everts 1987). An interface is introduced by fixing the spins in the first and the last 
layer in the states 

ni l  = O  niN = 2. (2.2) 

By symmetry this interface is located in the middle of the system. 
While in the M F  approximation the free energy is assumed to depend only on the 

probabilities of finding single spins in one of the accessible states, Bethe’s approxima- 
tion works with a free energy function that depends on the probabilities of finding 
single spins and nearest-neighbour spin pairs in one of the accessible states. The 
entropy function of the cc3 model in the Bethe approximation is (Siegert and Everts 
1987) 
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with 
2 

E, = c e, (a)  ln e,(.) 

y, = c Yl(.) 1nYl(a)+2 c Y l ( a )  lnyz(a) 

,=o 

2 5 

r-=O 1=3 

8 

U, = U,(.) In u , ( a ) .  
, = O  

Here e , (a) ,  i = O ,  1, 2, are the probabilities of finding a spin in the a t h  layer in one 
of the three possible states. y l ( a )  and U , ( ( Y )  are the probabilities of finding a nearest- 
neighbour bond configuration in the a t h  layer and between the a t h  and the ( a  + 1)th 
layer as listed in table 1. The energy is given by 

5 8 
+cos$.rr(l-A) u i ( a ) + c o s $ r ( l + A )  u i ( a ) ) ]  

i = 3  i = 6  
(2.4) 

and equations (2.3) and (2.4) yield the free energy of the cc3 model in the Bethe 
approximation: 

N e } ,  {VI, {U)) = E  - Ts. (2.5) 

The low-temperature expansions of spin models with a modulated magnetisation 
in one axial direction (Fisher and Selke 1981, Yeomans and Fisher 1984, Armitstead 
et a1 1986) are expansions in powers of the Boltzmann weights of spin deviations from 
the ground state. To determine the phase boundaries of the layering transitions 
described in 9 1 it suffices to take into account excited states in which the overturned 
spins are situated on axially connected chains with at most one protruding spin on 
the side (see figure 1) (Armitstead et a1 1986). More precisely, to locate the phase 
boundary where the thickness of the intervening domain with n, = 1 changes from 1 
to 1 + 1, one needs to consider excited states on chains of length 1. For a comparison 
of the Bethe approximation with this direct low-temperature expansion one has to find 
out which excitations are treated correctly by the former. This question has, in a more 
general context, been investigated by Kurata et a1 (1953) and Hijmans and de Boer 
(1955). It follows from the work of these authors that in the expansion of the partition 

Table 1. Probabilities for spin and spin pair states. 

Spin state ni ,  0 1 2 
Probability e , ( a )  e l ( a )  e 2 ( a )  
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Figure 1. Spin-flip configurations which are taken into account in the low-temperature 
series. The arrow indicates the axial direction of the model. 

function of the Bethe approximation the contributions of tree graphs, of which the 
above-mentioned chains are special examples, appear with the correct Boltzmann 
weights and with the proper multiplicities. Excitations corresponding to graphs that 
contain closed loops are not treated correctly by the Bethe approximation. Their 
contributions appear in the partition function with an improperly high order of the 
expansion parameter. Comparing the contributions of graphs of a given fixed length 
in the axial direction one sees that the contributions of graphs containing loops are 
of higher order in the expansion parameter than the contributions of the tree graphs. 
Thus, the error introduced by the improper treatment of the loop graphs in the Bethe 
approximation is of the same order as the error caused by neglecting them in the 
low-temperature expansion. Therefore the Bethe approximation must yield the correct 
low-temperature phase diagram. We checked this by a low-temperature expansion of 
the Bethe approximation up to third order (Siegert 1988). 

3. Numerical results 

In order to determine the stable magnetisation profile at the interface one has to 
minimise the free energy function (2.5) with the boundary conditions 

eo( 1) = 1 

eo( N )  = e , (  N )  = 0 

e,(  1) = e,( 1) = 0 

e , ( N )  = 1. 
(3.1) 

At higher temperatures where the ferromagnetic order is not perfect in the bulk these 
conditions are not well suited as they introduce strong boundary effects. It is more 
favourable to fix the modulus of the magnetisation at the boundaries to the value mf 
of the bulk magnetisation of the ferromagnetic phase. This leads to the boundary 
conditions 

eo( 1) = $( 1 + 2mf) 

eo( N )  = e,( N )  = ;( 1 - mf) 

e l ( l ) = e 2 ( l ) = t ( 1 - m f )  

e2(N)=+(1+2mf) .  
(3.2) 

mf must be determined separately from the equilibrium conditions of the bulk system 
(see Siegert and Everts 1987). By the use of the conditions (3.2) instead of (3.1) 
boundary effects are considerably reduced (figure 2). 

Interface phenomena are most conveniently studied by considering excess quantities 
that characterise the properties of the interface. The interfacial free energy is defined 
as 

A F = F - F f  (3.3) 



Layering transitions in chiral clock model 121 

, , I / /  

a 

Figure 2. Modulus of the magnetisation, ( a )  for the boundary conditions (3.1), ( b )  for the 
boundary conditions (3.2). T /  J = 2.5, A = 0.32. 

where F is the free energy (2.6) of a system containing an interface and Ff is the free 
energy of a system without an interface, i.e. Ff is the free energy of the ferromagnetic 
bulk phase. As an order parameter that reflects the phase transitions at the interface 
we introduce the excess of n = 1 states at the interface: 

N 

a = l  

Here 

e , ,  = f (  1 - m,) 

is the probability of finding n = 1 states in the bulk. For T = 0, p1 takes only integer 
values, p ,  = 0, 1, 2, . . . , corresponding to the number of layers with e l ( a )  = 1. 

The minimisation of the free energies (2.5) and (3 .3)  is achieved by the same 
numerical iteration procedure as has previously been applied in the case of the bulk 
problem (Siegert and Everts 1987). Depending on the initial conditions of the iteration 
procedure different interfacial configurations are obtained; the true stable configuration 
at a given point in the T-A plane corresponds to the absolute minimum of the free 
energy. Depending on the temperature we choose a system length between N =50 
and N = 100 layers. For N 3 90 no dependence of the excess free energy A F  and of 
the order parameter p1 on the system length N was observed for any temperature 
below the bulk transition temperature Tb(A). The resulting interface phase diagram 
is shown in figure 3 (in our numerical calculations we have always set Jo = J ) .  At all 
the phase boundaries the order parameterp, jumps by a finite amount and the transitions 
are of first order. For low temperatures T / J <  1.7 the transition lines Tl,l+l(A) behave 
as predicted by the low-temperature expansion. The jumps Ap, of the order parameter 
at the phase boundaries are almost unity (figure 4 ( a ) ) .  For higher temperatures the 
situation changes drastically: the transition lines TI, l+ l (A)  bend back towards small A 
as the temperature increases, yielding a wetting transition even at A = 0. Simultaneously 
the jump Ap, of the order parameter decreases to very small values (figures 4(b ,  c)), 
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0 0.1 A 0.2 0.3 

Figure 3. Interfacial phase diagram of the cc, model in the Bethe approximation. The 
phases are characterised by the values of their order parameter p ,  at T = 0. The full curves 
display phase transitions of the bulk. 

I 

0.24 0.26 0.28 
A 

lo i 

51 

T I  J 

Figure 4. Order parameter p , ( a )  at low temperatures ( T  = 1.75), ( b )  at higher temperatures 
( T  = 2.4J); ( c )  jump Ap, of the order parameter at the 2, 3 phase boundary. 
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e.g. Apl = 8.66 x lop4 at To,l = 2.4J, Ao,l = 0.126 and Apl = 8.70 x lop3 at TI,* = 2.45, 
AI,* = 0.256, which are not resolved in figure 4(b). The phase transition appears to be 
quasicontinuous. The centre of the interface is always localised either in the middle 
between two lattice layers ( 1  even) or at a layer ( I  odd). This is in contradiction to 
the expectation (Pandit et a1 1982) that the first-order layering transitions terminate 
at critical endpoints that accumulate at the roughening temperature where the interface 
is delocalised. We suspect that a true roughening transition cannot be detected within 
the Bethe approximation. Probably, the small jumps in the order parameter that define 
the upper decreasing branches of the transition lines are artefacts of the Bethe approxi- 
mation, i.e. the transition lines should end at points TI, where their slopes are still 
positive. In particular the closing of the To,l(A) transition line for small values of A 
in figure 3 is presumably unphysical. Nevertheless, the growing thickness of the 
intervening n = 1 layers with increasing temperature, which is reflected by the negative 
slopes of the transition lines at higher temperatures, is in keeping with the notion that 
the walls of the n = 1 layers repel each other due to their roughness. 

Since the jumps of p1 that reflect a deficiency of the Bethe approximation are 
exceedingly small whenever they occur in the vicinity of the bulk transition temperature 
Tb(A),  e.g. we find Apl = 7.75 x lo-'", p1 = 0.781 at T2,JA = 0) = 2.782J, we expect the 
approximation to be useful for an analysis of the wetting layer in the vicinity of Tb(A). 
Figure 5 shows a typical magnetisation profile for a temperature close to Tb(A = U). A 
paramagnetic layer intrudes between the n = 0 and the n = 2 domains. From the 
numerical analysis we find that the length A of this paramagnetic layer diverges 
logarithmically as T approaches Tb(A = 0), while the modulus of the magnetisation at 
the centre of the layer decreases as t"', t = 1 - T /  Th(A = 0), and the order parameter 
p1 is roughly proportional to A, p1 = f m , A .  Similar critical properties of an interface 
have been observed in several other models (Widom 1978, Lajzerowicz 1981, Lipowsky 
1982). For A # 0 the behaviour of the interface is different. Figure 6 shows a section 
of the phase diagram around A = 0.3. For 13 5 the phase boundaries T,,,+l(A) intersect 
the first-order transition line between the ferromagnetic and the modulated phases of 
the bulk at certain points T$,yil, and re-enter the ferromagnetic region of the 
bulk phase diagram at points T$il, A{,7Ll. The order parameter p1 is finite at the 
re-entry points corresponding to a finite thickness of the wetting layer for AZO. 
However, the values A$LI decrease to zero as 1 increases; pl(A$,7!,) diverges simul- 
taneously, thus matching the critical behaviour at A = 0. Furthermore, as shown in 
figure 6, the point Ai:d, T&) lies in the region of stability of the modulated bulk phases 
with wavenumbers q =An-, AT. These bulk phases are periodic sequences of five or 

::: c - 1 -  TyJ--a 

0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  , ,  

O 7--' " " " ' " " " ' " ' 

Figure 5. Modulus I M /  and phase cp of the magnetisation at the reduced temperature 
t - 4 . 5 ~ 1 0 - ~ .  T/J=2.819 2973, A = O ,  p,=6.138. 
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I 
0.25 0.30 0.35 

A 

Figure 6. Section of the phase diagram showing the two intersections of the 5 ,  6 phase 
boundary with the transition line of the ferromagnetic bulk phase. 

six consecutive layers of (predominantly) identical spins. The thickness 1 of the 
interfacial layer and the structure of the bulk phase are thus seen to match on the bulk 
transition line. 

4. Simplified model for the interface 

In the vicinity of the transition temperature of the bulk Tb(A) the properties of the 
interfacial layer, in particular the critical properties at A = 0, should be obtainable from 
the Landau expansion of the M F  free energy ( m l ( a ) ,  m 2 ( a )  are the components of the 
layer magnetisation) 

+~Km, (a ) [cos$ i -A(m, (a+l )+m, (a  -1)) 

+ sin $TA( mz(a  + 1) - m2( a - l ) ) ]  

+$Km2(a)[cos &rA(m2(a  + 1 ) +  m2(a  - 1)) 

- s i n $ r A ( m l ( a + l ) - m l ( a  -1))l 

+ f (  m:(a )  -3m,(a)m:(  a ) )  - f ( m : ( a )  + m:(a)I2+ O ( n ~ ? , ~ ( a ) ) } .  (4.1) 

Instead of FMF one could have expanded the Bethe approximation of the free energy. 
This would have resulted in a more complicated expression than (4.1). Since the jump 
in the bulk magnetisation at Tb(A) is approximately 0.5 in both approximations either 
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of the expansions will only yield qualitative results. We therefore regard the simpler 
expression (4.1) as a simplified model which we expect to provide a qualitative correct 
description of the properties of the interface for T B  Tb(A). 

From (4.1) one finds a first-order bulk phase transition at 

Tb(A) =#(2J0+ 5,) Jl = J COS &A. (4.2) 

The ferromagnetic bulk magnetisation is given by 

Ki = Ji/ T i = O ,  1. (4.3) mf=$+(2Ko+K,-w)  15 1/2 

It has a discontinuity at Tb(A) of A m f = $ .  Using the definitions 

mi (a + 1) - 2mi (a) + mi( a - 1) =: my( a ) 

mi(a  + 1) - mi(a - l )=:  2mi(a)  i = l , 2  

we take the contiuum limit of (4.1) and arrive at ( K  = J/ T )  

- P F  =- dz{(2Ko+ K1 - l)(m:(z) + mi(z)) ++K,(m,(z)m;’(z) + m2(z)m;(z)) 2L -L 

+ K sinf.rrA(m,(z)mb(z) - m2(z)m;(z)) 

I’ 
+$( m:(z) - 3m,( z)m:(z)) -+( m:(z) + mi( z))’}. (4.4) 

The components of the magnetisation are determined by the Euler-Lagrange equations 
to the functional (4.4): 

1 
m;(z)+2 tan$.rrAm;(z)+-[2(2Ko+ K,-l)m,(z)+m:(z)-m:(z) 

Kl 

-2m,(z)(m:(z)+ m:(z))] = O  (4.5a) 

1 
m;(z)-2 tan$rAm{(z)+- [2(2Ko+Kl - l)m2(z)-2ml(z)m2(z) 

Kl 

-2m2(z)(m:(z)+ m:(z))] =o. (4.5b) 

For A = O  we expect to find a solution of (4.5a, b) that agrees qualitatively with the 
profiles shown in figure 5, i.e. for - L S  z S 0 either ml(z) >> Im2(z)l or m,(z), Im2(z)l << 1 
should be fulfilled at least for sufficiently small values of the reduced temperature 
t = ( Tb(A = 0) - T ) /  T. Equations (4.5) may thus be simplified to 

1 
K 

m;(z) +- [2(2Ko+ K - l ) m l ( z )  + m:(z) - 2m:(z)] = 0 ( 4 . 6 ~ )  

(4.6b) 
2 
K 

m;(z)+- (2K0+ K - l )m2(z)  = O .  

These are solved by ( z S 0 )  

amf sinh( -Kz + c) - p 

m l ( z ) =  l + a  sinh(-Kz+c) 

m2(z) = a2 e’’‘ 

(4.7a) 

(4.7b) 
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I-. .-.-x 

A.0.2 

3mf-1 
a =  

(6m,-- 

3mf-  1 
p = 2mf- 

6mf- 1 
1/2 

K = ( lllf (4mf - 1)) 
K 

(4.8a) 

(4.8b) 

( 4 . 8 ~ )  

(4.8d) 

The constants c and a, are determined by the conditions m'(z = 0) = 0, v,(z = 0) = -+T 

which the modulus m and the phase v, of the magnetisation must fulfil by symmetry: 

1 135 

242 64 

-am,-s inhc-p 
l + a  sinh c ' 

sinh c = --+- (3mf- l)", + O( t )  

a2 = -43 

The maximum error of the functions (4.7) compared with numerical solutions of the 
differential equations (4.5) at A = 0 is about 1% at t = lo-'. From (4.3) and (4.8a, b) 
it follows that a - t"2 and p - t so that a 2 -  t"' (note that 3mf- 1 - t ) .  Hence the 
modulus of the magnetisation m(z) varies as t"' for IzI<< L, while the slope of the 
phase q ( z )  =tan-'(m,(z)/m,(z)) tends to a constant at T =  Tb(A=O): 

p'(z = 0) = - T = Tb(A = 0). 

The point of inflection zo of m(z), m"(zo) = 0, may be used as a measure of the length 
A of the paramagnetic domain: 

2 
A =  -2zo- - ( ln2 /a-c-~a2) .  

K 

This behaviour of the interface at A = 0 is the same as found in other models (Widom 
1978, Lajzerowicz 1981, Lipowsky 1982). 

For A # 0 we are not able to find an acceptable approximate analytic solution for 
equations (4.6). The numerical solutions of these equations (figure 7) show the same 

p, 

31 

10"  IO-^ 1 0 - ~  IO-' 
t 

Figure 7. Order parameter p ,  and modulus m, = m ( z  = 0) of the magnetisation for various 
values of A.  
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behaviour as found within the Bethe approximation. In contrast to the case A = 0 the 
magnetisation m ( z  = 0) and the order parameter p1 - A  tend to finite values as T 
approaches Tb(A). For small values of A we observe an antichiral ordering, q ( z  = 0) = 
-4rr, whereas at larger values of A a chiral order ( p ( z  = 0) = $T) is present. Thus, for 
T -  Tb(h) the simple model defined by the free energy functional (4.1) yields qualita- 
tively the same results as the numerical treatment of the Bethe approximation. 

5. Summary 

In this paper the Bethe approximation has been used to study interface properties of 
the three-state chiral clock model in three dimensions. We have shown that the Bethe 
approximation yields the exact low-temperature phase diagram. The arguments that 
lead to this conclusion apply not only to the cc3 model but to any layered model for 
which only the excitations corresponding to tree graphs are needed in the determination 
of the low-temperature phase diagram. For higher temperatures the behaviour of the 
interface deviates considerably from that at low temperatures. The jumps of the order 
parameter at the first-order layering transitions decrease to very small values and the 
transitions appear to be quasicontinuous. Nevertheless, it is found that these transitions 
remain first order at all temperatures. Critical endpoints that would indicate a roughen- 
ing transition has not been found. We suspect that this is a deficiency of the Bethe 
approximation. An intuitive picture of the correct phase diagram is displayed in figure 
8. The roughening temperature TR(A) may be slightly A dependent, but it will be of 

- -  - - -__  

0.25 
A 

Figure 8. Interfacial phase diagram of the cc, model including roughening effects 
(schematic). 
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the same magnitude as the critical temperature of the two-dimensional three-state Potts 
model. TR(A) will therefore intersect the wetting transition line Tw(A) at a point T W R ,  

A W R .  All first-order layering transition lines terminate at critical endpoints TI,/+,, 
which accumulate at T W R ,  A W R .  This resembles the picture found for multilayer 
adsorption in a lattice gas model (de Oliviera and Griffiths 1978, Pandit et a1 1982). 
The thickness of the wetting layer at the bulk transition temperature Tb(A) remains 
finite for all finite values of A, whereas it diverges logarithmically for A = 0, i.e. for 
the symmetric three-state Potts model. 
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